
MP8 Overview Session
CS 340 - Introduction to Computer Systems

TA: Ameya Gharpure

Goals

 In this MP:

● Build the middleware and backend for a stateful web server to explore the
Mandelbrot set

● Use Docker to launch a S3 compatible object storage
● Use AWS boto3 library for accessing your object storage

Mandelbrot Microservice Overview

● /mandelbrot: If there is a GET request on the route
/mandelbrot/<colormap>/<real>:<imag>:<height>:<dim>:<iter>, it will return the
mandelbrot set generated off those parameters

/mandelbrot/cividis/-0.7
435:0.126129:0.00018972
901232843951:256:1024

Flask Overview

● Provided Code: The provided code can be found in app.py and will give you the two
routes already defined that will render the frontend

● Found the app using python
-m flask run
○ Set the FLASK_DEBUG

environment variable to 1
to run in debug mode

● Visit https://127.0.0.1:5000/ to
the application

https://127.0.0.1:5000/

Helpful Functions & Modules
Programming in Python

● boto3.client: Will initialize an s3 client
● boto3.list_objects: Will list all the objects stored in a given bucket
● boto3.download_fileobj: Can be used to retrieve an object out of the storage system
● boto3.upload_fileobj: Can be used to store an object in the s3 storage
● send_file(): Can be used to return the bytes of a file in a response
● how to run MinIO: docker run -it --rm -p 9000:9000 -p 9090:9090 --name minio -e

"MINIO_ROOT_USER=ROOTNAME" -e "MINIO_ROOT_PASSWORD=CHANGEME123"
quay.io/minio/minio server /data --console-address :9090 (use this command to run
a local instance of MinIO before running your stateful server)

MP8 Part 3
Creating a stateful web server

Maintain State in Server

● Center real: center point used in the real axis
● Center Imaginary: center point used in the imaginary axis
● Height: contains the unit height that will be used when generating the mandelbrot

set
● Dimensions: render dimensions of the image
● Iterations: maximum iterations of the mandelbrot set
● Colormap: Matplotlib colormap used to generate the image

Modifying Server State

● POST /moveup: moves the center of the image up by 25% of the current height
● POST /moveDown: moves the center of the image down by 25% of the current height
● POST /moveLeft: moves the center of the image to the left by 25% of the current

height
● POST /moveRight: moves the center of the image to the right by 25% of the current

height
● POST /zoomIn: modifies the height by a factor of 1 / 1.4
● POST /zoomOut: modifies the height by a factor of 1.4

Modifying Server State Cont.

● POST /smallerImage: modifies the dim of the image by a factor of 1 / 1.25
● POST /largerImage: modifies the dim of the image by a factor of 1.25
● POST /moreIterations: modifies the iter of the image by a factor of 2
● POST /lessIterations: modifies the iter of the image by a factor of 1 / 2
● POST /changeColorMap: changes the colormap to be equal to the colormap value in

the JSON in the request's body

Generating the Mandelbrot Image

● GET /mandelbrot:
○ Check if a mandelbrot image with the same state values exists in the cache

■ Return the image if it exists in the cache
○ Make a request to the mandelbrot microservice if the image doesn’t exist

■ Store the returned image in the cache
■ Return the generated image

○ Respond with response code 200

State of the Cache

● GET /storage:
○ Return a JSON of every image stored as a array of entries

■ Each JSON object must contain a key which is the unique name for a given Mandelbrot image
stored in the cache

■ Each JSON object must contain an image with base64-encoded PNG image binary data and
data:image/png;base64 prefix

MP8 Testing

MP8 Testing

● Run the tests by using pytest
○ You can specify a filter with -k flag after pytest to run a specific test

● To test locally, run the docker command to start the MinIO Instance
● Start the Mandelbrot Microservice
● Run your microservice last

